Pt. 60, App. A-8, Meth. 29 Hg standard solution and a blank to prepare the standard curve. These aliquots and blank shall contain 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 ml of the working standard solution containing 0, 200, 400, 600, 800, and 1000 ng Hg, respectively. Prepare quality control samples by making a separate 10 μ g/ml standard and diluting until in the calibration range. 7.5.34 ICAP Standards and Quality Control Samples. Calibration standards for ICAP analysis can be combined into four different mixed standard solutions as follows: MIXED STANDARD SOLUTIONS FOR ICAP ANALYSIS | Solution | Elements | |----------------|---| | l
II
III | As, Be, Cd, Mn, Pb, Se, Zn.
Ba, Co, Cu, Fe.
Al, Cr, Ni.
Ag, P, Sb, Tl. | Prepare these standards by combining and diluting the appropriate volumes of the 1000 μg/ml solutions with 5 percent HNO₃. A minimum of one standard and a blank can be used to form each calibration curve. However, prepare a separate quality control sample spiked with known amounts of the target metals in quantities in the mid-range of the calibration curve. Suggested standard levels are 25 $\mu g/ml$ for Al, Cr and Pb, 15 $\mu g/ml$ for Fe, and 10 μ g/ml for the remaining elements. Prepare any standards containing less than 1 $\mu g/ml$ of metal on a daily basis. Standards containing greater than 1 µg/ml of metal should be stable for a minimum of 1 to 2 weeks. For ICP-MS, follow Method 6020 in EPA Publication SW-846 Third Edition (November 1986) including updates I, II, IIA, IIB and III, as incorporated by reference in $\S 60.17(i)$. 7.5.35 GFAAS Standards. Sb, As, Cd, Co, Pb, Se, and Tl. Prepare a 10 $\mu g/ml$ standard by adding 1 ml of 1000 μ g/ml standard to a 100-ml volumetric flask. Dilute with stirring to 100 ml with 10 percent HNO3. For GFAAS, matrix match the standards. Prepare a 100 ng/ml standard by adding 1 ml of the 10 ug/ml standard to a 100-ml volumetric flask, and dilute to 100 ml with the appropriate matrix solution. Prepare other standards by diluting the 100 ng/ml standards. Use at least five standards to make up the standard curve. Suggested levels are 0, 10, 50, 75, and 100 ng/ ml. Prepare quality control samples by making a separate 10 $\mu g/ml$ standard and diluting until it is in the range of the samples. Prepare any standards containing less than 1 µg/ ml of metal on a daily basis. Standards containing greater than 1 µg/ml of metal should be stable for a minimum of 1 to 2 weeks. 7.5.36 Matrix Modifiers. 7.5.36.1 Nickel Nitrate, 1 Percent (V/V). Dissolve 4.956 g of $Ni(N0_3)_2 \cdot 6H_20$ or other nickel compound suitable for preparation of this matrix modifier in approximately 50 ml of water in a 100-ml volumetric flask. Dilute to 100 ml with water. 7.5.36.2 Nickel Nitrate, 0.1 Percent (V/V). Dilute 10 ml of 1 percent nickel nitrate solution to 100 ml with water. Inject an equal amount of sample and this modifier into the graphite furnace during GFAAS analysis for As. 7.5.36.3 Lanthanum. Carefully dissolve $0.5864~{\rm g}$ of La_20_3 in 10 ml of concentrated HNO3, and dilute the solution by adding it with stirring to approximately 50 ml of water. Dilute to 100 ml with water, and mix well. Inject an equal amount of sample and this modifier into the graphite furnace during GFAAS analysis for Pb. 7.5.37 Whatman 40 and 541 Filter Papers (or equivalent). For filtration of digested samples. ## 8.0 Sample Collection, Preservation, Transport, and Storage 8.1 Sampling. The complexity of this method is such that, to obtain reliable results, both testers and analysts must be trained and experienced with the test procedures, including source sampling; reagent preparation and handling; sample handling; safety equipment and procedures; analytical calculations; reporting; and the specific procedural descriptions throughout this method. 8.1.1 Pretest Preparation. Follow same general procedure given in Method 5, Section 8.1, except that, unless particulate emissions are to be determined, the filter need not be desiccated or weighed. First, rinse all sampling train glassware with hot tap water and then wash in hot soapy water. Next, rinse glassware three times with tap water, followed by three additional rinses with water. Then soak all glassware in a 10 percent (V/V) nitric acid solution for a minimum of 4 hours, rinse three times with water, rinse a final time with acetone, and allow to air dry. Cover all glassware openings where contamination can occur until the sampling train is assembled for sampling. 8.1.2 Preliminary Determinations. Same as Method 5, Section 8.1.2. 8.1.3 Preparation of Sampling Train. 8.1.3.1 Set up the sampling train as shown in Figure 29–1. Follow the same general procedures given in Method 5, Section 8.3, except place 100 ml of the $\rm HNO_3/H_2O_2$ solution (Section 7.3.1 of this method) in each of the second and third impingers as shown in Figure 29–1. Place 100 ml of the acidic KMnO₄ absorbing solution (Section 7.3.2 of this method) in each of the fifth and sixth impingers as shown in Figure 29–1, and transfer approximately 200 to 300 g of pre-weighed silica gel from its container to the last impinger. Alternatively, the silica gel may be weighed directly in the impinger just prior to final train assembly.